Связанные понятия
Конъю́нкция (от лат. conjunctio — «союз, связь») — логическая операция, по смыслу максимально приближенная к союзу «и». Синонимы: логи́ческое «И», логи́ческое умноже́ние, иногда просто «И».
Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.
Опера́ция — конструкция в языках программирования, аналогичная по записи математическим операциям, то есть специальный способ записи некоторых действий.
Логи́ческий тип да́нных, или булев тип, или булевый тип (от англ. Boolean или logical data type) — примитивный тип данных в информатике, принимающий два возможных значения, иногда называемых истиной (true) и ложью (false). Присутствует в подавляющем большинстве языков программирования как самостоятельная сущность или реализуется через численный тип данных. В некоторых языках программирования за значение истина полагается 1, за значение ложь — 0.
Каррирование (от англ. currying, иногда — карринг) — преобразование функции от многих аргументов в набор функций, каждая из которых является функцией от одного аргумента. Возможность такого преобразования впервые отмечена в трудах Готтлоба Фреге, систематически изучена Моисеем Шейнфинкелем в 1920-е годы, а наименование получило по имени Хаскелла Карри — разработчика комбинаторной логики, в которой сведение к функциям одного аргумента носит основополагающий характер.
Упоминания в литературе
Восхождение от абстрактного к конкретному предполагает
логические операции – анализ и синтез, мысленный анализ объектов и синтез получаемых в анализе знаний. Знания, получаемые в анализе, являются абстрактными по отношению к тому знанию, которое получается в результате их синтеза. Последнее является конкретным по отношению к предыдущим. Конкретное (синтетическое) знание является не простой суммой абстрактных (аналитических) знаний, а новым знанием, получаемым из абстрактных посредством специально изобретенных для этого логических операций. Эти операции специально изобретаются такими, чтобы результат их применения удовлетворял критериям соответствия некоторой эмпирической реальности. Поясню эту ситуацию такой абстрактной схемой.
Индивидуальный объект (событие, процесс) является представителем абстрактного объекта. Этот последний, в свою очередь, обобщает свойства и признаки различных индивидуальных объектов: это то, над чем мы можем осуществлять те или иные
логические операции . Так, говоря о «звуке а», его отличиях от других звуков, его признаках, его изменении при сочетании с другими звуками и т.д., мы оперируем с абстрактным объектом, но относим все эти утверждения к множеству индивидуальных звуков а или, точнее, к каждому из них в отдельности.
Далее на той же странице следуют рассуждения о построении идеальных объектов. «Наряду с интеллектуальной интуицией основной
логической операцией теоретического мышления является идеализация, целью и результатом которой является создание (конструирование) особого типа предметов – так называемых «идеальных объектов». Мир (множество) такого рода объектов и образуют собственную онтологическую основу (базис) теоретического научного знания в отличие от эмпирического знания. Научная теория – это логически организованное множество высказываний о некотором классе идеальных объектов, их свойствах и отношениях». Здесь идеализацией названа рассмотренная нами выше схематизация элементов абстрактного образа и его свойств.
Таким образом, оба используемых нами критерия свидетельствуют о том, что, манипулируя с помощью воздействия праймом, мы можем изменять степень фиксированности на каждом из возможных вариантов решения задачи. При этом то решение, которое «закрывается» созданием фиксированности в результате короткой серии, воспринимается и реализуется (увеличение времени решения) как инсайтное, а решение, с реализации которого снимается фиксированность в результате длинной серии, воспринимается и реализуется как рутинное. Вероятно, фиксированность и как ее следствие невозможность решения задачи на привычном уровне с помощью
логических операций и является тем самым механизмом перевода решения на уровень использования интуитивных, неосознаваемых процессов решения, необходимых для нахождения инсайтного решения.
На основе анализа рекомендованных работ Ж. Пиаже следует выяснить содержание понятия «число», подробно остановиться на
логических операциях классификации и сериации, синтез которых лежит в основе математического мышления ребенка.
Наконец, следует рассмотреть проблему исследования отдельного случая (case study) как сравнительного исследования. Такая постановка вопроса кажется парадоксальной: сравнение как
логическая операция требует как минимум двух объектов, для которых выделяются сходства и различия. Поэтому кейс-стади не может считаться сравнительным исследованием (comparative study) в узком смысле. Более того, с точки зрения логики это «антисравнительное» исследование, направленное на детальный анализ одного случая.
Основоположник семиотики американский логик Чарлз Пирс (1894–1914) подразделял знаки прежде всего по отношению их к денотату на изображения, индексы и символы. Отношение между знаком и
логическими операциями познающего субъекта он положил в основу определения понятия «значение».
Противопоставление предикату –
логическая операция , в результате которой субъектом становится понятие, противоречащее предикату, а предикатом – субъект исходного суждения.
Связанные понятия (продолжение)
Переписывание — широкий спектр техник, методов и теоретических результатов, связанных с процедурами последовательной замены частей формул или термов формального языка по заданной схеме — системе переписывающих правил.
Опера́ция — отображение, ставящее в соответствие одному или нескольким элементам множества (аргументам) другой элемент (значение). Термин «операция» как правило применяется к арифметическим или логическим действиям, в отличие от термина «оператор», который чаще применяется к некоторым отображениям множества на себя, имеющим замечательные свойства.
Комбинационная логика (комбинационная схема) в теории цифровых устройств — двоичная логика функционирования устройств комбинационного типа. У комбинационных устройств состояние выхода однозначно определяется набором входных сигналов, что отличает комбинационную логику от секвенциальной логики, в рамках которой выходное значение зависит не только от текущего входного воздействия, но и от предыстории функционирования цифрового устройства. Другими словами, секвенциальная логика предполагает наличие...
Тип-сумма (англ. sum type; также Σ-тип, меченое объединение) — конструкция в языках программирования и интуиционистской теории типов, тип данных, построенный как дизъюнктное объединение исходных типов.
Бу́лева фу́нкция (или логи́ческая функция, или функция а́лгебры ло́гики) от n аргументов — в дискретной математике — отображение Bn → B, где B = {0,1} — булево множество. Элементы булева множества {1, 0} обычно интерпретируют как логические значения «истинно» и «ложно», хотя в общем случае они рассматриваются как формальные символы, не несущие определённого смысла. Неотрицательное целое число n называют арностью или местностью функции, в случае n = 0 булева функция превращается в булеву константу...
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Многозна́чная ло́гика — тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году. В настоящее время существует очень много других систем многозначной логики, которые в свою очередь могут быть сгруппированы по классам. Важнейшими из таких классов являются частичные логики и нечёткие логики.
Сравне́ние в программировании — общее название ряда операций над па́рами значений одного типа, реализующих математические отношения равенства и порядка. В языках высокого уровня такие операции, чаще всего, возвращают булево значение («истина» или «ложь»).
Свёртка списка (англ. folding, также известна как reduce, accumulate) в программировании — функция высшего порядка, которая производит преобразование структуры данных к единственному атомарному значению при помощи заданной функции. Операция свёртки часто используется в функциональном программировании при обработке списков. Свёртка может быть обобщена на произвольный алгебраический тип данных при помощи понятия катаморфизма из теории категорий.
Регуля́рный язык (регуля́рное мно́жество) в теории формальных языков — множество слов, которое распознает некоторый конечный автомат. Класс регулярных множеств удобно изучать в целом, а полученные результаты оказываются применимы для достаточно широкого спектра формальных языков.
Норма́льный алгори́тм (алгори́фм) Ма́ркова (НАМ, также марковский алгоритм) — один из стандартных способов формального определения понятия алгоритма (другой известный способ — машина Тьюринга). Понятие нормального алгоритма введено А. А. Марковым (младшим) в конце 1940-х годов в работах по неразрешимости некоторых проблем теории ассоциативных вычислений. Традиционное написание и произношение слова «алгорифм» в этом термине также восходит к его автору, многие годы читавшему курс математической логики...
В математике и информатике подстановка — это операция синтаксической замены подтермов данного терма другими термами, согласно определённым правилам. Обычно речь идёт о подстановке терма вместо переменной.
Подробнее: Подстановка
Трои́чная ло́гика (трёхзначная логика или тернарная логика) — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая многозначная логика. Она является простейшим расширением двузначной логики.
Реку́рсия — определение, описание, изображение какого-либо объекта или процесса внутри самого этого объекта или процесса, то есть ситуация, когда объект является частью самого себя. Термин «рекурсия» используется в различных специальных областях знаний — от лингвистики до логики, но наиболее широкое применение находит в математике и информатике.
Терна́рная усло́вная опера́ция (от лат. ternarius — «тройной») (обычно записывается как ?:) — во многих языках программирования операция, возвращающая свой второй или третий операнд в зависимости от значения логического выражения, заданного первым операндом. Как можно судить из названия, тернарная операция принимает всего три указанных операнда. Аналогом тернарной условной операции в математической логике и булевой алгебре является условная дизъюнкция, которая записывается в виде и реализует алгоритм...
Алгебраи́ческий тип да́нных — в информатике наиболее общий составной тип, представляющий собой тип-сумму из типов-произведений. Алгебраический тип имеет набор конструкторов, каждый из которых принимает на вход значения определённых типов и возвращает значение конструируемого типа. Конструктор представляет собой функцию, которая строит значение своего типа на основе входных значений. Для последующего извлечения этих значений из алгебраического типа используется сопоставление с образцом.
Сопоставление с образцом (англ. Pattern matching) — метод анализа и обработки структур данных в языках программирования, основанный на выполнении определённых инструкций в зависимости от совпадения исследуемого значения с тем или иным образцом, в качестве которого может использоваться константа, предикат, тип данных или иная поддерживаемая языком конструкция.
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ. Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
Зависимый тип (англ. dependent type) в информатике и логике — тип, который зависит от некоторого значения. Зависимые типы играют ключевую роль в интуиционистской теории типов и построении функциональных языков программирования таких как ATS, Agda и...
Переме́нная — атрибут физической или абстрактной системы, который может изменять своё, как правило численное, значение. Понятие переменной широко используется в таких областях как математика, естественные науки, техника и программирование. Примерами переменных могут служить: температура воздуха, параметр функции и многое другое.
Пара́метр в программировании — принятый функцией аргумент. Термин «аргумент» подразумевает, что конкретно и какой конкретной функции было передано, а параметр — в каком качестве функция применила это принятое. То есть вызывающий код передает аргумент в параметр, который определен в члене спецификации функции.
Конкатена́ция (лат. concatenatio «присоединение цепями; сцепле́ние») — операция склеивания объектов линейной структуры, обычно строк. Например, конкатенация слов «микро» и «мир» даст слово «микромир».
Проблема остановки (или проблема останова) — это одна из центральных проблем в теории алгоритмов, которая может неформально быть поставлена в виде...
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Логика первого порядка , называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
В информатике, спи́сок (англ. list) — это абстрактный тип данных, представляющий собой упорядоченный набор значений, в котором некоторое значение может встречаться более одного раза. Экземпляр списка является компьютерной реализацией математического понятия конечной последовательности.
Подробнее: Список (информатика)
Формальный язык в математической логике и информатике — множество конечных слов (строк, цепочек) над конечным алфавитом. Понятие языка чаще всего используется в теории автоматов, теории вычислимости и теории алгоритмов. Научная теория, которая имеет дело с этим объектом, называется теорией формальных языков.
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.
Алгоритмическая разрешимость — свойство формальной теории обладать алгоритмом, определяющим по данной формуле, выводима она из множества аксиом данной теории или нет. Теория называется разрешимой, если такой алгоритм существует, и неразрешимой, в противном случае. Вопрос о выводимости в формальной теории является частным, но вместе с тем важнейшим случаем более общей проблемы разрешимости.
Термин
рекурсивная функция в теории вычислимости используется для обозначения трёх классов функций...
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
Двоичный (бинарный) поиск (также известен как метод деления пополам и дихотомия) — классический алгоритм поиска элемента в отсортированном массиве (векторе), использующий дробление массива на половины. Используется в информатике, вычислительной математике и математическом программировании.
Теория автоматов — раздел дискретной математики, изучающий абстрактные автоматы — вычислительные машины, представленные в виде математических моделей — и задачи, которые они могут решать.
Структурная индукция — конструктивный метод математического доказательства, обобщающий математическую индукцию (применяемую над натуральным рядом) на произвольные рекурсивно определённые частично упорядоченные совокупности. Структурная рекурсия — реализация структурной индукции в форме определения, процедуры доказательства или программы, обеспечивающая индукционный переход над частично упорядоченной совокупностью.
Тип-произведение (также Π-тип, произведение типов; англ. product type) — конструкция в языках программирования и интуиционистской теории типов, тип данных, построенный как декартово произведение исходных типов; другими словами — кортеж типов, или «кортеж как тип». Использованные типы и порядок их следования определяют сигнатуру типа-произведения; порядок следования объектов в создаваемом кортеже сохраняется на протяжении его времени жизни согласно заданной сигнатуре.
В теории алгоритмов классами сложности называются множества вычислительных задач, примерно одинаковых по сложности вычисления. Говоря более узко, классы сложности — это множества предикатов (функций, получающих на вход слово и возвращающих ответ 0 или 1), использующих для вычисления примерно одинаковые количества ресурсов.
Подробнее: Класс сложности
Класс — термин, употребляемый в теории множеств для обозначения произвольных совокупностей множеств, обладающих каким-либо определенным свойством или признаком. Более строгое определение класса зависит от выбора исходной системы аксиом. В системе аксиом Цермело — Френкеля определение класса является неформальным, тогда как другие системы, например, система аксиом фон Неймана — Бернайса — Гёделя, аксиоматизируют определение «собственного класса» как некоторого семейства, которое не может быть элементом...
Каламбур типизации является прямым нарушением типобезопасности. Традиционно возможность построить каламбур типизации связывается со слабой типизацией, но и некоторые сильно типизированные языки или их реализации предоставляют такие возможности (как правило, используя в связанных с ними идентификаторах слова unsafe или unchecked). Сторонники типобезопасности утверждают, что «необходимость» каламбуров типизации является мифом.
Маши́на Тью́ринга (МТ) — абстрактный исполнитель (абстрактная вычислительная машина). Была предложена Аланом Тьюрингом в 1936 году для формализации понятия алгоритма.
Символьный тип (Сhar) — тип данных, предназначенный для хранения одного символа (управляющего или печатного) в определённой кодировке. Может являться как однобайтовым (для стандартной таблицы символов), так и многобайтовым (к примеру, для Юникода). Основным применением является обращение к отдельным знакам строки.
Логика Хоара (англ. Hoare logic, также Floyd—Hoare logic, или Hoare rules) — формальная система с набором логических правил, предназначенных для доказательства корректности компьютерных программ. Была предложена в 1969 году английским учёным в области информатики и математической логики Хоаром, позже развита самим Хоаром и другими исследователями. Первоначальная идея была предложена в работе Флойда, который опубликовал похожую систему в применении к блок-схемам (англ. flowchart).
Вычисления с оракулом — вычисление с помощью машины Тьюринга, дополненной оракулом с неизвестным внутренним устройством.
В программировании,
строковый тип (англ. string «нить, вереница») — тип данных, значениями которого является произвольная последовательность (строка) символов алфавита. Каждая переменная такого типа (строковая переменная) может быть представлена фиксированным количеством байтов либо иметь произвольную длину.